JaxEdit
New
Example Article
Example Beamer
JaxEdit Introduction
Open
Save
Share
Present
Option
Help
Source
Show
noname.tex
% -*- coding: utf-8 -*- \documentclass{beamer} % https://github.com/zohooo/epyt % \usetheme{epyt} \newtheorem{thm}{Theorem} \begin{document} \title{Online LaTeX Editor} \author{JaxEdit Project} \date{July 3rd, 2012} \begin{frame} \titlepage \end{frame} \section[Introduction]{Long Introduction} \begin{frame} We have the Cauchy-Schwarz inequality: \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \] where $a_k$ and $b_k$ are real numbers, for any $k$. \end{frame} \section{Calculus} \begin{frame} \begin{thm} If we have the following conditions: \begin{enumerate} \item $f(x)$ is continuous on $[a,b]$, \item $f(a)$ and $f(b)$ are of different signs, \end{enumerate} Then there exists a point $\xi\in(a,b)$ such that $f(\xi)=0$. \end{thm} \end{frame} \end{document}
Preview
Code
Loading...
Close
Default Drive:
Local Drive
SkyDrive
Code Editor:
Simple
Colorful
Done
Current folder:
Go Up
Save as:
.txt
Save
Close
Please enter sharing password:
Submit
Password for reading html output:
Password for editing latex source:
Email for resetting above passwords:
Note: The shared file will be deleted one year after last visit.
[help]
Share